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Abstract. Linear independence of integer shifts of compactly supported functions plays an important
role in approximation theory and wavelet analysis. In this note we provide a simple proof for two known
characterizations of linear independence of integer shifts of a finite number of compactly supported
distributions on Rd.

By l(Zd) we denote the space of all complex-valued sequences v = {v(k)}k∈Zd : Zd → C on Zd.
In particular, by δ we denote the Dirac/Kronecker sequence on Zd such that δ(0) = 1 and δ(k) = 0
for all k ∈ Zd\{0}. Let φ1, . . . , φr be compactly supported distributions on Rd. The integer shifts of
φ1, . . . , φr are (globally) linearly independent if

r∑
`=1

∑
k∈Zd

v`(k)φ`(· − k) = 0 (1)

for some sequences v1, . . . , vr ∈ l(Zd), then we must have v1(k) = · · · = vr(k) = 0 for all k ∈ Zd.
As usual, by D(Rd) we denote the space of all compactly supported C∞ (test) functions on Rd. For

a locally integrable function φ on Rd, we shall use the following pairing:

〈φ, h〉 =

∫
Rd

φ(x)h(x)dx, h ∈ D(Rd),

where h(x) is the complex conjugate of h(x). For a general distribution φ and h ∈ D(Rd), 〈φ, h〉 :=

φ(h) and we define 〈h, φ〉 := 〈φ, h〉. For x = (x1, . . . , xd)
T and z = (z1, . . . , zd)

T ∈ Cd, we define
z · x := z1x1 + · · · + zdxd and moreover, we define zx := zx11 · · · z

xd
d if all x1, . . . , xd are integers and

z1, . . . , zd are nonzero. For a compactly supported function φ ∈ L1(Rd), its Fourier-Laplace transform

φ̂ : Cd → C is defined to be

φ̂(z) :=

∫
Rd

φ(x)e−iz·xdx = 〈φ(x), e−iz·x〉, z ∈ Cd.

The Fourier-Laplace transform can be naturally extended to compactly supported distributions φ as

φ̂(z) := φ̂h(z) = 〈φ(x), h(x)e−iz·x〉, where h ∈ D(Rd) takes value 1 in a neighborhood of the support

of φ. For a compactly supported distribution φ on Rd, its Fourier-Laplace transform φ̂ is an analytic
function in Cd.

The problem of linear independence of integer shifts of functions originated from investigation of
multivariate splines. de Boor and Höllig [2] considered linear independence of integer shifts of a box
spline and obtained a necessary condition, which is confirmed to be also a sufficient condition by Jia
[6]. Ron [9] characterizes linear independence of integer shifts of a compactly supported distribution
(that is, r = 1) in terms of its Fourier-Laplace transform. The general case of linear independence
for any r ∈ N has been established in Jia and Micchelli [7] by studying solutions of certain systems
of partial difference equations ([4, 7]). A different characterization of linear independence of integer
shifts of compactly supported distributions is given as a special case of Ben-Artzi and Ron [1] with
an extension by Zhao [11] in terms of compactly supported dual functionals. See Ron [10] for an
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excellent survey on many interesting results about shift-invariant spaces and linear independence. For
the importance of linear independence in approximation theory, see [1, 2, 4, 6, 7, 9, 10, 11]. For the
role and application of linear independence in wavelet analysis, see [3, 5, 8, 10] and references therein.

Due to the importance of the two characterizations of linear independence of integer shifts of a finite
number of compactly supported functions and distributions in approximation theory and wavelet
analysis, we provide a simple self-contained proof here.

Main Theorem. Let φ1, . . . , φr be compactly supported distributions on Rd. The following statements
are equivalent:

(i) The integer shifts of φ1, . . . , φr are linearly independent.

(ii) {φ̂`(z + 2πk)}k∈Zd , ` = 1, . . . , r are linearly independent for all z ∈ Cd, that is, there do not
exist ζ ∈ Cd and c1, . . . , cr ∈ C such that |c1|+ · · ·+ |cr| 6= 0 and

r∑
`=1

c`φ̂`(ζ + 2πk) = 0, ∀ k ∈ Zd. (2)

(iii) There exist compactly supported C∞(Rd) functions φ̃1, . . . , φ̃r ∈ D(Rd) such that

〈φ̃m, φ`(· − k)〉 = δ(m− `)δ(k), ∀ k ∈ Zd and `,m = 1, . . . , r. (3)

Proof. As observed in [9], (i)=⇒(ii) is a direct consequence of the Poisson summation formula:∑
k∈Zd

f(x− k) =
∑
k∈Zd

f̂(2πk)ei2πk·x

for every compactly supported distribution f on Rd, where the above series on both sides converge

in the sense of distributions. For ζ ∈ Cd and f(x) = η(x)e−iζ·x, since f̂(z) = η̂(ζ + z), the Poisson
summation formula can be written as∑

k∈Zd

η(x− k)e−iζ·(x−k) =
∑
k∈Zd

η̂(ζ + 2πk)ei2πk·x (4)

for every compactly supported distribution η on Rd and ζ ∈ Cd. Suppose that (ii) fails. Then there
exist ζ ∈ Cd and c1, . . . , cr ∈ C such that |c1| + · · · + |cr| 6= 0 and (2) holds. Define η :=

∑r
`=1 c`φ`.

Then η is a compactly supported distribution on Rd. By (2), we have η̂(ζ + 2πk) = 0 for all k ∈ Zd.
Now by the Poisson summation formula in (4), we have

e−iζ·x
∑
k∈Zd

r∑
`=1

c`e
iζ·kφ`(x− k) =

∑
k∈Zd

r∑
`=1

c`e
−iζ·(x−k)φ`(x− k) =

∑
k∈Zd

η(x− k)e−iζ·(x−k) = 0.

Since e−iζ·x 6= 0, defining v`(k) := c`e
iζ·k for all k ∈ Zd and ` = 1, . . . , r, we see that (1) holds. This is

a contradiction to item (i), since not all v1, . . . , vr are identically zero. Thus, we proved (i)=⇒(ii).
(iii)=⇒(i) is trivial. Suppose that (1) holds for some v1, . . . , vr ∈ l(Zd). Then it follows trivially

from (3) in item (iii) that

vm(n) =
〈 r∑
`=1

∑
k∈Zd

v`(k)φ`(· − k), φ̃m(· − n)
〉

= 0, ∀ n ∈ Zd,m = 1, . . . , r.

Hence, all v1, . . . , vr must be identically zero. Therefore, we proved (iii)=⇒(i).
We now prove the key part (ii)=⇒(iii) using induction on r. The claim is obviously true for r = 0,

since the statements are empty. We now prove the claim for r ≥ 1. Define a linear mapping L by

L(h)(z) :=
∑
k∈Zd

〈φr(· − k), h〉zk, z ∈ (C\{0})d, h ∈ D(Rd). (5)
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Since both h and φr are compactly supported, L(h) is a well-defined Laurent polynomial in the Laurent
polynomial ring C[z1, . . . , zd, z

−1
1 , . . . , z−1d ]. Define

D := {h ∈ D(Rd) : 〈φ`(· − k), h〉 = 0, ∀ k ∈ Zd, ` = 1, . . . , r − 1}.
We now prove that L(D) is an ideal in C[z1, . . . , zd, z

−1
1 , . . . , z−1d ]. Clearly, D is a linear subspace

of D(Rd) and h(· − k) ∈ D whenever h ∈ D and k ∈ Zd. Consequently, p + q ∈ L(D) whenever
p, q ∈ L(D). Let h ∈ D and p(z) =

∑
n∈Zd pnz

n ∈ C[z1, . . . , zd, z
−1
1 , . . . , z−1d ] be a Laurent polynomial.

Define g :=
∑

n∈Zd pnh(·−n). Since {pn}n∈Zd is a finitely supported sequence on Zd and h is compactly
supported, we see that g is a well-defined function in D(Rd) and consequently, g ∈ D by h(· − k) ∈ D
for all k ∈ Zd. By calculation, we have

L(g)(z) =
∑
k∈Zd

〈φr(· − k), g〉zk =
∑
n∈Zd

∑
k∈Zd

pn〈φr(· − k), h(· − n)〉zk

=
∑
n∈Zd

∑
k∈Zd

pn〈φr(· − k + n), h〉zk−nzn =
∑
n∈Zd

pnz
nL(h)(z) = p(z)L(h)(z).

Since g ∈ D, this proves pL(h) = L(g) ∈ L(D). Hence, L(D) is an ideal in C[z1, . . . , zd, z
−1
1 , . . . , z−1d ].

Define I := L(D) ∩ C[z1, . . . , zd], where C[z1, . . . , zd] is the polynomial ring in d-variables. Then it is
trivial to see that I is an ideal in C[z1, . . . , zd]. Define V (I) := {z ∈ Cd : p(z) = 0 ∀ p ∈ I}. Using
proof by contradiction, we now prove that V (I)∩ (C\{0})d = ∅. Suppose V (I)∩ (C\{0})d 6= ∅. Then
there exists ζ = (ζ1, . . . , ζd)

T ∈ Cd such that eiζ := (eiζ1 , . . . , eiζd)T ∈ (C\{0})d and p(eiζ) = 0 for all
p ∈ I. By the definition of the mapping L, for n ∈ Zd and h ∈ D(Rd), we have

L(h(· − n)) =
∑
k∈Zd

〈φr(· − k), h(· − n)〉zk =
∑
k∈Zd

〈φr(· − k + n), h〉zk−nzn = znL(h)(z). (6)

Consequently, for every h ∈ D, since L(h) is a Laurent polynomial, there exists n ∈ Zd such that
L(h(· − n))(z) = znL(h)(z) ∈ I. Therefore, for every h ∈ D, we must have eiζ·nL(h)(eiζ) = L(h(· −
n))(eiζ) = 0 by L(h(· − n)) ∈ I. Since eiζ·n 6= 0, we conclude that L(h)(eiζ) = 0 for all h ∈ D, which,
as we shall demonstrate later, leads to a contradiction to our assumption in item (ii).

On the other hand, by induction hypothesis, there exist h̃1, . . . , h̃r−1 ∈ D(Rd) such that

〈h̃m, φ`(· − k)〉 = δ(m− `)δ(k), ∀ k ∈ Zd and `,m = 1, . . . , r − 1. (7)

For h ∈ D(Rd), we define

Ph := h−
r−1∑
`=1

∑
n∈Zd

〈h, φ`(· − n)〉h̃`(· − n).

By (7), it is trivial to directly check that Ph ∈ D and

L(Ph)(z) =
∑
k∈Zd

〈φr(· − k), h〉zk −
r−1∑
`=1

∑
n∈Zd

∑
k∈Zd

〈h, φ`(· − n)〉〈φr(· − k), h̃`(· − n)〉zk

=
∑
k∈Zd

〈φr(· − k), h〉zk −
r−1∑
`=1

∑
k∈Zd

∑
n∈Zd

〈φ`(· − k), h〉〈φr(· − n), h̃`(· − k)〉zn

=
∑
k∈Zd

〈φr(· − k), h〉zk −
r−1∑
`=1

∑
k∈Zd

〈φ`(· − k), h〉zk
(∑
n∈Zd

〈φr(· − n), h̃`(· − k)〉zn−k
)
.

Setting z = eiζ in the above identity and defining cr := 1 and c` := −
∑

n∈Zd〈φr(· − n), h̃`〉eiζ·n =

−L(h̃`)(e
iζ) ∈ C for ` = 1, . . . , r − 1, we conclude that〈 r∑

`=1

∑
k∈Zd

c`e
iζ·kφ`(· − k), h

〉
= L(Ph)(eiζ) = 0 ∀ h ∈ D(Rd),
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where we used the facts that Ph ∈ D and L(g)(eiζ) = 0 for all g ∈ D. That is, setting η :=
∑r

`=1 c`φ`,
we proved ∑

k∈Zd

η(x− k)e−iζ·(x−k) = e−iζ·x
r∑
`=1

∑
k∈Zd

c`e
iζ·kφ`(· − k) = 0.

By the Poisson summation formula in (4), we deduce from the above identity that
∑r

`=1 c`φ̂`(ζ+2πk) =
η̂(ζ + 2πk) = 0 for all k ∈ Zd. Since cr = 1 6= 0, this is a contradiction to item (ii). This proves
V (I) ∩ (C\{0})d = ∅. Consequently, the polynomial z1 · · · zd must vanish at all points in V (I). By
Hilbert Nullstellensatz, there exists a positive integer m such that zm1 · · · zmd ∈ I. Hence, there exists

h ∈ D such that L(h) = zm1 · · · zmd . Set φ̃r := h(·+ (m, . . . ,m)T). Hence, by (6), we have

L(φ̃r) = L(h(·+ (m, . . . ,m)T))(z) = L(h)(z)z−m1 · · · z−md = 1,

which is equivalent to 〈φ̃r, φr(· − k)〉 = δ(k) for all k ∈ Zd. Since φ̃r ∈ D, this implies that 〈φ̃r, φ`(· −
k)〉 = 0 = δ(`− r)δ(k) for all k ∈ Zd and ` = 1, . . . , r − 1. Now define

φ̃` := h̃` −
∑
n∈Zd

〈h̃`, φr(· − n)〉φ̃r(· − n), ` = 1, . . . , r − 1.

It is trivial to deduce from (7) and the above identities that (3) is satisfied. Since φ̃1, . . . , φ̃r ∈ D(Rd),
the claim holds for r. Now by induction, we see that (ii)=⇒(iii). �

The equivalence between (i) and (ii) of Main Theorem has been established in [7] (and in [9] for r =
1). The existence of compactly supported dual functionals in (iii) is a special case of [1, Theorem 1.3]
and [11]. The operator L(h) in (5) is linked to the bracket product. For the bracket product and
its applications in approximation theory and wavelet analysis, for example, see [8, 10] and references
therein.
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